ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 149]      



Задача 87402

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
[ Объем тетраэдра и пирамиды ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a . Найдите боковую поверхность и объём пирамиды, если её диагональное сечение равновелико основанию.
Прислать комментарий     Решение


Задача 87474

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Двугранный угол между смежными боковыми гранями правильной четырёхугольной пирамиды равен α , а сторона основания равна b . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 110449

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .
Прислать комментарий     Решение


Задача 110450

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины 3 и проведены две наклонные, составляющие с перпендикуляром углы по 30o . Угол между наклонными равен 60o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BCM = .
Прислать комментарий     Решение


Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .