ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 1311]      



Задача 66419

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

В коробке лежат фрукты (не менее пяти). Если вытащить наугад три фрукта, то среди них обязательно найдется яблоко. Если вытащить наугад четыре фрукта, то среди них обязательно найдется груша. Какие фрукты могут быть вытащены и в каком количестве, если взять наугад пять фруктов?
Прислать комментарий     Решение


Задача 66427

Тема:   [ Ребусы ]
Сложность: 3
Классы: 4,5,6

Решите ребус: ** · * = * + 1. (Каждая звёздочка обозначает одну цифру. Звёздочки могут обозначать как разные цифры, так и одинаковые.)
Прислать комментарий     Решение


Задача 66432

Тема:   [ Ребусы ]
Сложность: 3
Классы: 4,5,6

Найдите какое-нибудь решение ребуса: ГОД + ФИФА = 2018. (Одинаковыми буквами обозначены одинаковые цифры, разными буквами – разные цифры. Достаточно привести ответ.)
Прислать комментарий     Решение


Задача 66490

Темы:   [ Задачи-шутки ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Прислать комментарий     Решение


Задача 66525

Тема:   [ Ребусы ]
Сложность: 3
Классы: 5,6,7

В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.
Прислать комментарий     Решение


Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .