Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 1325]
|
|
Сложность: 4 Классы: 8,9,10
|
Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.
|
|
Сложность: 4 Классы: 10,11
|
Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
В лесном пункте обмена можно обменять
• апельсин — на две груши,
• яблоко и грушу — на апельсин,
• апельсин и грушу — на яблоко.
По случаю праздника в пункте устроили акцию: за каждый обмен в подарок выдают коллекционный фантик. У лисы есть 30 яблок, 30 груш и 30 апельсинов. Какое максимальное количество фантиков она может получить?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Петя и Вася нашли $100$ кубиков одинакового размера, $50$ из них были белого цвета и $50$ – чёрного. Они придумали игру. Назовём башенкой один или несколько кубиков, стоящих друг на друге. В начале игры все кубики лежат по одному, то есть имеется $100$ башенок. За один ход игрок должен одну из башенок поставить на другую (переворачивать башенки нельзя), при этом в новой башенке не должно быть подряд двух одинаковых по цвету кубиков. Ходят по очереди, начинает Петя. Кто не может сделать ход – проиграл. Кто может обеспечить себе победу, как бы ни играл его соперник?
|
|
Сложность: 4 Классы: 8,9,10,11
|
У Васи есть $13$ одинаковых на вид гирь, но $12$ из них весят одинаково, а одна фальшивая – весит больше остальных. Также у него есть двое чашечных весов – одни правильные, а другие показывают верный результат (какая чаша тяжелее), если массы на чашах различаются, а в случае равенства могут показать что угодно (какие именно весы правильные, Вася не знает). Перед каждым взвешиванием Вася может сам выбирать весы. Докажите, что Вася может гарантированно найти фальшивую гирю за $3$ взвешивания.
Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 1325]