Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 1340]
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Из набора гирь весом 1, 2, ..., 26 выделить шесть гирь так, чтобы среди них
не было выбрать двух кучек равного веса.
Доказать, что нельзя выбрать семь гирь, обладающих тем же свойством.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по
очереди. За один ход играющий может взять из кучки спички в количестве pn, где p – простое число, n = 0, 1, 2, 3, ... (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9
максимальной скорости полицейского. Полицейский хочет оказаться вместе с
гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?
См. задачу 79385 а) и б).
В магазин привезли цистерну молока. У продавца имеются чашечные весы без гирь
(на чашки весов можно ставить фляги), а также три одинаковые фляги, две из
которых пустые, а в третьей налит 1 л молока. Как отлить в одну флягу ровно 85
л молока, сделав не более восьми взвешиваний?
Страница:
<< 148 149 150 151
152 153 154 >> [Всего задач: 1340]