ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 5977]      



Задача 60595

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 2+
Классы: 8,9,10,11

Разложите в цепные дроби числа 147/13 и 129/111.

Прислать комментарий     Решение

Задача 60638

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

Прислать комментарий     Решение

Задача 60652

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Прислать комментарий     Решение

Задача 60676

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Что означают записи:   а) a ≡ b (mod 0);   б)  a ≡ b (mod 1)?

Прислать комментарий     Решение

Задача 60677

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9,10

Докажите, что если  a ≡ b (mod m)  и   c ≡ d (mod m),  то
  а)  a + c ≡ b + d (mod m);   б)  ac ≡ bd (mod m).

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .