ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 5977]      



Задача 60292

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для любого натурального n  25n+3 + 5n·3n+2  делится на 17.

Прислать комментарий     Решение

Задача 60298

Темы:   [ Признаки делимости на 3 и 9 ]
[ Индукция (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для всех натуральных n число, записываемое 3n единицами, делится на 3n.

Прислать комментарий     Решение

Задача 60497

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9

Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

Прислать комментарий     Решение

Задача 60498

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  (bc, ac, ab)  делится на  (a, b, c)².

Прислать комментарий     Решение

Задача 60552

Темы:   [ Делимость чисел. Общие свойства ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2+
Классы: 7,8,9

Докажите, что для действительного положительного α и натурального d всегда выполнено равенство  [α/d] = [[α]/d].

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 5977]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .