Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1113]
Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз).
Могли ли оказаться отмечены
а) все числа, кроме, быть может, двух?
б) все числа, кроме, быть может, одного?
в) все числа?
|
|
Сложность: 3+ Классы: 9,10,11
|
В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу).
По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?
|
|
Сложность: 3+ Классы: 9,10,11
|
В турнире по волейболу n команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть Р – сумма квадратов чисел, задающих количество побед каждой команды, Q – сумма квадратов чисел, задающих количество их поражений. Докажите, что
P = Q.
|
|
Сложность: 3+ Классы: 8,9,10
|
На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.
Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1113]