ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и a > 1. а) Докажите, что существует единственное аффинное
преобразование, которое переводит данную точку O в данную
точку O', а данный базис векторов
e1,
e2 —
в данный базис
e1',
e2'.
Пусть OABCDEF – шестигранная пирамида с основанием ABCDEF, описанная около сферы ω. Плоскость, проходящая через точки касания ω с гранями OFA, OAB и ABCDEF, пересекает ребро OA в точке A1; аналогично определяются точки B1, C1, D1, E1 и F1. Пусть ℓ, m и n – прямые A1D1, B1E1 и C1F1 соответственно. Оказалось, что ℓ и m лежат в одной плоскости, m и n также лежат в одной плоскости. Докажите, что ℓ и n лежат в одной плоскости. Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
|
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]
Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 2, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.
Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 1 : 3, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.
Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 2 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.
Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 3 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F.
Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке