ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 16 17 18 19 20 21 22 [Всего задач: 107]
Предлагается построить N точек на плоскости так, чтобы все расстояния между ними равнялись заранее заданным числам: для любых двух точек Mi и Mj, где i и Можно ли провести построение, если расстояния rij заданы так, что всякие 5 из N точек построить можно? б) Достаточно ли требовать, чтобы можно было построить всякие 4 из в) Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда
Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1 ≤ P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1 ≤ P2S2 + P3S3 + P4S4.
Страница: << 16 17 18 19 20 21 22 [Всего задач: 107]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке