ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 60966

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 8,9,10

Разделите многочлены с остатком:
  а)  x4 – 4x³ + 6x² – 3x + 1  на  x² – x + 1;
  б)  2x³ + 2x² + x + 6  на  x² + 2x + 1;
  в)  x4 + 1  на  x5 + 1.

Прислать комментарий     Решение

Задача 60967

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Найдите остаток от деления многочлена  P(x) = x5 – 17x + 1  на  x + 2.

Прислать комментарий     Решение

Задача 60969

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Найдите остаток от деления многочлена  P(x) = x81 + x27 + x9 + x³ + x  на
  a)  x – 1;
  б)  x² – 1.

Прислать комментарий     Решение

Задача 60981

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 3+
Классы: 8,9,10

При каких p и q двучлен  x4 + 1  делится на  x² + px + q?

Прислать комментарий     Решение

Задача 60988

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Алгоритм Евклида ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что из равенства  P(x) = Q(x)T(x) + R(x)  следует соотношение  (P(x), Q(x)) = (Q(x), R(x)).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .