|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите наименьшее значение функции y = 8x-2 sin x+6 на отрезке [0; Докажите, что число Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей. Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же? Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 79]
Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
Докажите, что если n – чётное совершенное число, то оно имеет вид n = 2k–1(2k – 1), и p = 2k – 1 – простое число Мерсенна.
Найдите наименьшее число вида n = 2αpq, где p и q – некоторые нечётные простые числа, для которого σ(n) = 3n.
Докажите равенства:
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 79] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|