Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 517]
Прямая, параллельная медиане CM треугольника ABC, пересекается с прямыми AB, BC и AC в точках C', A' и B' соответственно.
Докажите, что треугольники AA'C' и BB'C' равновелики.
Дана трапеция ABCD с основаниями AD = a и BC = b. Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых
AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
На неравных сторонах AB и AC треугольника ABC
внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине.
а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что ∠B1MC1 = φ.
б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
[Неравенство Птолемея]
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан четырёхугольник ABCD. Докажите, что AC·BD ≤ AB·CD + BC·AD.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 517]