Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 512]
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых
AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
На неравных сторонах
AB и
AC треугольника
ABC
внешним образом построены равнобедренные треугольники
AC1B и
AB1C с углом φ при вершине.
а)
M – точка медианы
AA1 (или её продолжения), равноудаленная от точек
B1 и
C1. Докажите, что ∠
B1MC1 = φ.
б)
O – точка серединного перпендикуляра к отрезку
BC, равноудаленная от точек
B1 и
C1. Докажите, что ∠
B1OC1 = 180° – φ.
[Неравенство Птолемея]
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан четырёхугольник ABCD. Докажите, что AC·BD ≤ AB·CD + BC·AD.
В трапеции ABCD AB – основание, AC = BC, H – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.
|
|
Сложность: 4+ Классы: 8,9,10
|
Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 512]