Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 517]
Медиана AD и биссектриса CE прямоугольного треугольника
ABC (∠B = 90°) пересекаются в точке M.
Найдите площадь треугольника ABC, если CM = 8, ME = 5.
|
|
Сложность: 3+ Классы: 10,11
|
Точки А1 и А3 расположены по одну сторону от плоскости α, а точки А2 и А4 – по другую сторону. Пусть В1, В2, В3 и В4 – точки пересечения отрезков А1А2, А2А3, А3А4 и А4А1
с плоскостью α соответственно. Найдите
В трапеции основания равны 84 и 42, а боковые стороны – 39 и 45. Через точку пересечения диагоналей параллельно основаниям проведена прямая.
Найдите площади получившихся трапеций.
Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.
Точка O – центр окружности, вписанной в треугольник ABC. На сторонах AC и BC выбрали соответственно точки M и K так, что BK·AB = BO² и AM·AB = AO². Докажите, что точки M, O и K лежат на одной прямой.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 517]