ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



Задача 53087

Темы:   [ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Две окружности радиусов 1 и пересекаются в точке A. Расстояние между центрами окружностей равно 2. Хорда AC большей окружности пересекает меньшую окружность в точке B и делится этой точкой пополам. Найдите эту хорду.

Прислать комментарий     Решение

Задача 53111

Темы:   [ Пересекающиеся окружности ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что  AB = a.  Найдите NM.

Прислать комментарий     Решение

Задача 53652

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведена прямая, пересекающая окружности в точках C и D, и через точку B — прямая, пересекающая окружности в точках E и F (точки C и E — на одной окружности, D и F — на другой). Докажите, что $ \angle$CBD = $ \angle$EAF.

Прислать комментарий     Решение


Задача 64394

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

Прислать комментарий     Решение

Задача 64875

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .