Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

Вниз   Решение


На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.

ВверхВниз   Решение


Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

ВверхВниз   Решение


Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых.

ВверхВниз   Решение


Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

Вверх   Решение

Задача 87373
Темы:    [ Касающиеся сферы ]
[ Касательные к сферам ]
[ Куб ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

Ребро куба ABCDA1B1C1D1 равно 1. Одна сфера радиуса касается плоскости ABC в точке A ; другая сфера касается плоскости A1B1C1 в точке E1 , лежащей на отрезке B1C1 , причём B1E1:E1C1 = 2:1 . Известно, что эти сферы касаются друг друга внешним образом и точка их касания лежит внутри куба. Найдите расстояние от точки касания сфер до точки D .

Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7866

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .