ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В треугольнике ABC медиана AK пересекает медиану BD в точке L. Найдите площадь четырёхугольника KCDL, если площадь треугольника ABC равна 24.
Медианой пятиугольника ABCDE назовём отрезок, соединяющий вершину с серединой противолежащей стороны (A – с серединой CD, B – с серединой DE и т.д.). Докажите, что если четыре медианы выпуклого пятиугольника перпендикулярны сторонам, к которым они проведены, то таким же свойством обладает и пятая медиана. Пусть a – длина стороны правильного пятиугольника, d – длина его диагонали. Докажите, что d² = a² + ad. Внутри прямоугольного треугольника ABC (угол C — прямой) взята точка O так, что OA = OB = b. В треугольнике ABC CD — высота, точка E— середина отрезка OC, DE = a. Найдите CE. Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.
На рисунке изображена фигура ABCD .
Стороны AB , CD и AD этой фигуры– отрезки
(причём AB||CD и AD
Известно, что расстояние от центра описанной окружности до
стороны AB треугольника ABC равняется половине радиуса этой
окружности. Найдите высоту треугольника ABC, опущенную на сторону
AB, если она меньше
Прямоугольный треугольник ABC вписан в окружность. Из вершины C прямого
угла проведена хорда CM, пересекающая гипотенузу в точке K. Найдите площадь
треугольника ABM, если AK : AB = 1 : 4,
BC = Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α .
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.
Четырёхугольник ABCD вписан в окружность. Длины противоположных сторон AB и CD соответственно равны 9 и 4, AC = 7, BD = 8. Найдите площадь четырёхугольника ABCD.
Окружность пересекает стороны угла FEG в точках F, N, M и G,
точка N находится между E и F, точка M — между E и G.
Величины углов FNM и MFG равны
|
Задача 102303
Условие
Окружность пересекает стороны угла FEG в точках F, N, M и G,
точка N находится между E и F, точка M — между E и G.
Величины углов FNM и MFG равны
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке