ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30. Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2. Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек). Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение? Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают. Али-Баба и разбойник делят клад, состоящий из 100 золотых монет, разложенных в 10 кучек по 10 монет. Али-Баба выбирает 4 кучки, ставит около каждой из них по кружке, откладывает в каждую кружку по несколько монет (не менее одной, но не всю кучку). Разбойник должен как-то переставить кружки, изменив их первоначальное расположение, после чего монеты высыпаются из кружек в те кучки, около которых оказались кружки. Далее Али-Баба снова выбирает 4 кучки из 10, ставит около них кружки, и т. д. В любой момент Али-Баба может уйти, унеся с собой любые три кучки по выбору. Остальные монеты достаются разбойнику. Какое наибольшее число монет сможет унести Али-Баба, если разбойник тоже старается получить побольше монет? Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)? Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.
Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник? Сложите из фигур, изображённых на рисунке, квадрат размером 9×9 с вырезанным в его центре квадратом 3×3. (Фигуры можно не только поворачивать, но и переворачивать.)
Волшебным считается момент, в который число минут на электронных часах совпадает с числом часов. Чтобы сварить волшебное зелье, его надо и поставить на огонь, и снять с огня в волшебные моменты. А чтобы оно получилось вкусным, его надо варить от 1,5 до 2 часов. Сколько времени варится вкусное волшебное зелье? Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами? |
Задача 107833
Условие
Существует ли выпуклое тело, отличное от шара, ортогональные проекции
которого на некоторые три попарно перпендикулярные плоскости являются
кругами?
Решение
Первый способ.
Введем в пространстве координаты и рассмотрим координатные плоскости
x2 + y2 + z2
Его проекция на плоскость
x2 + y2
Аналогично определим цилиндры C2 и C3, как множества точек, которые
проецируются в единичные круги с центрами в начале координат, лежащие в
плоскостях Пусть C — пересечение цилиндров C1, C2 и C3. Мы утверждаем, что C — требуемое тело. Оно выпукло, так как пересечение выпуклых множеств выпукло.
Покажем, что проекции тела C на плоскости
Осталось доказать, что тело C не является шаром. Точка
Остается один вопрос, который может показаться глупым: а не может ли C
оказаться шаром, отличным от B? Нетрудно видеть, что не может: проекции
тела C на плоскости Второй способ. [набросок] Рассмотрим шар и его проекции на три плоскости. Пусть некоторая точка A сферы не проецируется ни на одну из границ проекций. Тогда некоторый круг с центром в точке A обладает тем же свойством. Отрежем от шара соответствующий кусочек — получим фигуру, не являющуюся шаром, но дающую те же самые проекции на рассматриваемые плоскости.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке