Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Вниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

Вверх   Решение

Задача 109396
Темы:    [ Прямоугольный тетраэдр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

Решение

Докажем сначала следующее утверждение: если рёбра треугольной пирамиды попарно перпендикулярны, то квадрат площади основания равен сумме квадратов площадей боковых граней. Действительно, пусть OX , OY и OZ – попарно перпендикулярные боковые рёбра треугольной пирамиды OXYZ с вершиной O (рис.1), причём SΔ XOY = S , SΔ XOZ = P , SΔ YOZ = Q . Обозначим OX=a , OY=b , OZ=c . Тогда


перемножив почленно два первых уравнения системы и разделив результат на третье, получим, что a= . Пусть SΔ XYZ = T . Докажем, что T2=S2+P2+Q2 . Для этого опустим перпендикуляр OF из вершины O на ребро YZ . Ребро OX перпендикулярно плоскости грани OYZ , так как OX OY и OX OZ по условию задачи. Тогда прямая YZ перпендикулярна плоскости OXF , значит XF YZ , т.е. XF – высота треугольника XYZ . Из прямоугольных треугольников YOZ и XOF находим, что
OF = = = ,


XF = = = .

Значит,
T = SΔ XYZ = YZ· XF = · =


= = = .

Следовательно, T2=S2+P2+Q2 . Что и требовалось доказать. Перейдём к нашей задаче (рис.2). Проведём сечение сферы плоскостью DA1B1 . Получим окружность и две секущие DA1A2 и DB1B2 , проведённые к ней из точки D , лежащей вне окружности. Тогда DA1· DA2 = DB1· DB2 . Аналогично докажем, что DA1· DA2 = DC1· DC2 . Кроме того,
= = ,


= = ,

значит,
= ,

откуда
SΔ DB2C2 = SΔ DA2B2· = 40· = 50.

Аналогично,
SΔ DA2C2 = SΔ DA2B2· = 40· = 30.

Следовательно,
SΔ A2B2C2 = = =


=10 = 10 = 50.


Ответ

50 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8486

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .