Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

Вниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

ВверхВниз   Решение


Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CK, а в треугольнике BCK – биссектрису KL. Прямые AC и KL пересекаются в точке M. Известно, что
A > ∠C.  Докажите, что  AK + KC > AM.

ВверхВниз   Решение


Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.

ВверхВниз   Решение


На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

Вверх   Решение

Задача 109431
Темы:    [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь многоугольника ]
Сложность: 3
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

Решение

Можно попытаться найти решение, просто пробуя различные пары вершин внутри квадрата 4*4 и стараясь сделать получаемый шестиугольник поуже. При этом удобнее считать не площадь шестиугольника, а площадь оставшейся части квадрата - она должна быть равна 10 клеткам. Для подсчёта площади можно разбить оставшуюся часть на прямоугольные треугольники и вспомнить, что площадь прямоугольного треугольника, катеты которого идут по линиям сетки, равна половине площади прямоугольника со сторонами a и b (см. рис. слева) и равна ab/2 (эта формула верна и для произвольного прямоугольного треугольника). Те из вас, кто знает более общую формулу: площадь треугольника со стороной a и опущенной на неё высотой h равна ah/2 (см. рис. справа), могут сразу найти площадь произвольного треугольника, не разбивая его на прямоугольные.

Ответ

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Дата 2007
класс
Класс 7
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .