ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.
Даны два выпуклых многоугольника. Известно, что расстояние между
любыми двумя вершинами первого не больше 1 , расстояние между
любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше,
чем 1/ Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 . Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор. Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?
В пространстве заданы три луча: DA , DB и DC , имеющие общее начало
D , причём Даны точки A(3, 5), B(–6, –2) и C(0, –6). Докажите, что треугольник ABC равнобедренный. На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать? |
Задача 109680
УсловиеНа столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать? РешениеОтметим на одном циферблате положения часовых стрелок всех часов. Циферблат разобьётся на пять секторов. Занумеруем их по кругу (см. рис.). Обозначим через Si суммарное время, необходимое для установки всех часов на начало i-го сектора. Ясно, что время перевода отдельной стрелки является суммой некоторых xj. Например, время перевода на начало первого сектора равно x5 для пятых часов, x2 + x3 + x4 + x5 для вторых и т.д. Итак, S1 = (x2 + x3 + x4 + x5) + (x3 + x4 + x5) + (x4 + x5) + x5 = x2 + 2x3 + 3x4 + 4x5. Остальные Si выражаются аналогично. Следовательно, S1 + S2 + S3 + S4 + S5 = (1 + 2 + 3 + 4)(x1 + x2 + x3 + x4 + x5) = 10·12 = 120 часов. Поэтому наименьшая сумма не превосходит 120 : 5 = 24 часа. С другой стороны, если все секторы одинаковы (например, часы показывают 12:00, 2:24, 4:48, 7:12 и 9:36), то все Si равны 24 часам, поэтому менее чем 24 часами не обойтись. ОтветЗа 24 часа. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке