Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Вниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Даны точки  A(3, 5),  B(–6, –2)  и  C(0, –6).  Докажите, что треугольник ABC равнобедренный.

ВверхВниз   Решение


На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Вверх   Решение

Задача 109680
Темы:    [ Процессы и операции ]
[ Задачи на движение ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?


Решение

  Отметим на одном циферблате положения часовых стрелок всех часов. Циферблат разобьётся на пять секторов. Занумеруем их по кругу (см. рис.).

  Пусть часовая стрелка проходит секторы за время x1, x2, x3, x4, x5 соответственно (некоторые из этих чисел, возможно, нулевые). Заметим, что если мы станем устанавливать на всех часах время, соответствующее положению внутри сектора, то каждая часовая стрелка пройдёт через начало сектора. Это значит, что суммарное время перевода окажется заведомо больше, чем если бы мы устанавливали все часы на начало сектора.
  Обозначим через Si суммарное время, необходимое для установки всех часов на начало i-го сектора. Ясно, что время перевода отдельной стрелки является суммой некоторых xj. Например, время перевода на начало первого сектора равно x5 для пятых часов,  x2 + x3 + x4 + x5  для вторых и т.д. Итак,
S1 = (x2 + x3 + x4 + x5) + (x3 + x4 + x5) + (x4 + x5) + x5 = x2 + 2x3 + 3x4 + 4x5.
  Остальные Si выражаются аналогично. Следовательно,  S1 + S2 + S3 + S4 + S5 = (1 + 2 + 3 + 4)(x1 + x2 + x3 + x4 + x5) = 10·12 = 120  часов.
  Поэтому наименьшая сумма не превосходит  120 : 5 = 24  часа. С другой стороны, если все секторы одинаковы (например, часы показывают 12:00, 2:24, 4:48, 7:12 и 9:36), то все Si равны 24 часам, поэтому менее чем 24 часами не обойтись.


Ответ

За 24 часа.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1998
Этап
Вариант 5
Класс
Класс 9
задача
Номер 98.5.9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .