Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

Вниз   Решение


Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?

ВверхВниз   Решение


Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

ВверхВниз   Решение


На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.

ВверхВниз   Решение


Известно, что существует число S , такое, что если a+b+c+d=S и +++=S ( a , b , c , d отличны от нуля и единицы), то + + += S . Найти S .

ВверхВниз   Решение


Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?

ВверхВниз   Решение


Докажите, что если a, b, c – положительные числа и  ab + bc + ca > a + b + c,  то  a + b + c > 3.

ВверхВниз   Решение


Числа от 51 до 150 расставлены в таблицу 10×10. Может ли случиться, что для каждой пары чисел a, b, стоящих в соседних по стороне клетках, хотя бы одно из уравнений  x² – ax + b = 0  и  x² – bx + a = 0  имеет два целых корня?

ВверхВниз   Решение


Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

ВверхВниз   Решение


В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.

Вверх   Решение

Задача 110187
Темы:    [ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В треугольнике ABC  ( AB < BC)  точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что  ∠IMA = ∠INB.


Решение

  Пусть NP – диаметр описанной окружности. Тогда  ∠NBP = ∠NAP = 90°,  точка P – середина дуги AC, поэтому  ∠ABP = ∠CBP,  то есть BP – биссектриса угла ABC. Следовательно, I лежит на BP (см. рис.).

  Диаметр NP является серединным перпендикуляром к отрезку AC, следовательно, NP проходит через M. Как известно (см. задачу 53119), треугольник API – равнобедренный  (AP = IP).  AM – высота прямоугольного треугольника NAP, поэтому  IP : MP = AP : MP = NP : AH = NP : IP.  Отсюда следует подобие треугольников PMI и PIN, значит,  ∠PMI = ∠PIN.
  Но  ∠IMA = ∠PMI – 90°,  а из прямоугольного треугольника BNI:  ∠INB = ∠PINIBN = ∠PIN – 90°.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2005
Этап
Вариант 4
1
Класс
Класс 9
задача
Номер 05.4.9.4
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2005
Этап
Вариант 4
1
Класс
Класс 10
задача
Номер 05.4.10.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .