ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Отрезок KB является биссектрисой треугольника KLM .
Окружность радиуса 5 проходит через вершину K ,
касается стороны LM в точке B и пересекает сторону
KL в точке A . Найдите угол MKL и площадь
треугольника KLM , если ML=9 Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй. Дан треугольник ABC. Точки A1, B1 и
C1 – середины сторон BC, AC и AB соответственно.
На продолжении отрезка C1B1 отложен отрезок B1K
по длине равный От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
В справочнике "Магия для чайников" написано: На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 так, что лучи A1A, B1B и С1C являются биссектрисами углов треугольника A1B1C1. Докажите, что AA1, BB1 и СС1 – высоты треугольника ABC. Докажите, что если у выпуклого многоугольника все углы равны, то по крайней мере у двух его сторон длины не превосходят длин соседних с ними сторон. В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура. Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции y = sin x. Может ли та же кривая являться графиком функции y = sin 2x в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)? Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN. В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) . |
Задача 110204
Условие
В тетраэдре ABCD из вершины A опустили перпендикуляры AB' ,
AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC
пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Решение
Продолжим отрезок AB' до пересечения с плоскостью BCD в точке B'' . Так как плоскости (BCD) и (ACD) симетричны относительно биссекторной плоскости, то AB'=B'B'' . Аналогично по точкам C' и D' строим точки C'' и D'' . При гомотетии с центром A и коэффициентом Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке