Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB .

Вниз   Решение


В треугольник ABC со сторонами  AB = 6,  BC = 5,  AC = 7  вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.

ВверхВниз   Решение


В трапеции ABCD с меньшим основанием BC и площадью, равной 4, прямые BC и AD касаются окружности диаметром 2 в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна . Найдите величину угла MBN и длину основания AD .

ВверхВниз   Решение


Пятиугольник ABCDE вписан в окружность. Найдите её длину, если BC = CE, площадь треугольника ADE равна площади треугольника CDE, площадь треугольника ABC равна площади треугольника BCD, а 3AC + 2BD = 5$ \sqrt{5}$.

ВверхВниз   Решение


Автор: Фольклор

В описанном пятиугольнике ABCDE диагонали AD и CE пересекаются в центре O вписанной окружности.
Докажите, что отрезок BO и сторона DE перпендикулярны.

ВверхВниз   Решение


В трапеции ABCD с большим основанием BC и площадью, равной 4 , прямые BC и AD касаются окружности диаметром 2 в точках B и D соответственно. Боковые стороны трапеции AB и CD пересекают окружность в точках M и N соответственно. Длина MN равна . Найдите величину угла MDN и длину основания BC .

ВверхВниз   Решение


Докажите, что площадь правильного двенадцатиугольника, вписанного в окружность радиуса 1, равна 3.

ВверхВниз   Решение


В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

ВверхВниз   Решение


Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?

ВверхВниз   Решение


На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = BC) медианы AM и CN пересекаются в точке D под прямым углом. Найдите все углы треугольника ABC и площадь четырёхугольника NBMD, если основание AC = 1.

ВверхВниз   Решение


В параллелепипеде ABCDA1B1C1D1 грань ABCD – квадрат со стороной 5, ребро AA1 также равно 5, и это ребро образует с рёбрами AB и AD углы 60o . Найдите диагональ BD1 .

Вверх   Решение

Задача 111110
Темы:    [ Параллелепипеды (прочее) ]
[ Скалярное произведение ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

В параллелепипеде ABCDA1B1C1D1 грань ABCD – квадрат со стороной 5, ребро AA1 также равно 5, и это ребро образует с рёбрами AB и AD углы 60o . Найдите диагональ BD1 .

Решение



Треугольник AA1B – равносторонний, т.к. AA1=AB и BAA1 = 60o . Поэтому A1B = AA1=5 . Аналогично, A1D = 5 . Боковые рёбра A1A , A1B и A1D треугольной пирамиды A1ABD с вершиной A1 равны между собой, значит, высота A1O этой пирамиды проходит через центр окружности, описанной около основания ABD , а т.к. треугольник ABD прямоугольный, то точка O – середина его гипотенузы BD , т.е. центр квадрата ABCD . Из прямоугольного треугольника OBA1 находим, что

A1O = = = .

Поскольку D1C = A1B = A1A = D1D , точка D1 равноудалена от вершин C и D , поэтому её ортогональная проекция K на плоскость основания ABCD также равноудалена от C и D , а значит, лежит на серединном перпендикуляре к отрезку CD . Поскольку D1K || A1O и D1K =A1O , четырёхугольник A1D1KO – прямоугольник, поэтому OK = A1D1 = 5 . Продолжим отрезок KO до пересечения со отрезком AB в точке M . Тогда M – середина AB и MK = MO+OK = . Из прямоугольных треугольников MKB и KBD1 находим, что
BK = = = ,


BD1 = = = = = 5.




= ++ BD12= (++)2=


=2+2+2+ 2· + 2· + 2· =


=25+25 +25 + 2· 25 cos 120o + 2· 25 cos 90o+ 2· 25 cos 60o= 75


BD1= = 5.


Ответ

5 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 7929

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .