Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC . На прямой AC отмечена точка B1 так, что AB=AB1 , при этом B1 и C находятся по одну сторону от A . Через точки C , B1 и основание биссектрисы угла A треугольника ABC проводится окружность , вторично пересекающая окружность, описанную около треугольника ABC , в точке Q . Докажите, что касательная, проведённая к в точке Q , параллельна AC .

Вниз   Решение


Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм.

ВверхВниз   Решение


Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?

ВверхВниз   Решение


Расставьте скобки так, чтобы получилось верное равенство:

1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.

ВверхВниз   Решение


Точки I‍a, I‍b и I‍c – центры вневписанных окружностей, касающихся сторон соответственно BC, AC и AB треугольника ABC, I — центр вписанной окружности этого треугольника. Докажите, что описанная окружность треугольника ABC проходит через середины сторон треугольника I‍aI‍bI‍c и середины отрезков II‍a, II‍b и II‍c.

ВверхВниз   Решение


Для некоторых натуральных чисел a, b, c и d выполняются равенства  a/c = b/d = ab+1/cd+1.  Докажите, что  a = c  и  b = d.

ВверхВниз   Решение


Существуют ли различные взаимно простые в совокупности натуральные числа a, b и c, большие 1 и такие, что  2a + 1  делится на b,  2b + 1  делится на c, а  2c + 1  делится на a?

ВверхВниз   Решение


Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

ВверхВниз   Решение


Решите в натуральных числах уравнение  3x + 4y = 5z.

ВверхВниз   Решение


Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

ВверхВниз   Решение


Пете и Васе подарили одинаковые наборы из N гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение N.

ВверхВниз   Решение


Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.

ВверхВниз   Решение


В компании из семи человек любые шесть могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

ВверхВниз   Решение


Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что  ∠ILA = ∠IMB,  ∠IKC = ∠INB.  Докажите, что
AM + KL + CN = AC.

Вверх   Решение

Задача 111855
Темы:    [ Свойства биссектрис, конкуррентность ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что  ∠ILA = ∠IMB,  ∠IKC = ∠INB.  Докажите, что
AM + KL + CN = AC.


Решение

Опустим из точки I на стороны AB, BC, CA перпендикуляры IC1, IA1, IB1 соответственно (см. рис.). Очевидно, эти перпендикуляры равны по длине; кроме того,  AC1 = AB1  и  CA1 = CB1.  Значит, прямоугольные треугольники IKB1 и INA1 равны по катету и острому углу, поэтому  B1K = A1N.  Аналогично  B1L = C1M.  Следовательно,  AM + KL + CN = AM + MC1 + NA1 + CN = AC1 + CA1 = AB1 + CB1 = AC.

Замечания

Утверждение верно и в случае, когда треугольник BMN тупоугольный.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2007
Этап
Вариант 5
Класс
Класс 8
задача
Номер 07.5.8.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .