Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

Вниз   Решение


Автор: Фольклор

B правильном шестиугольнике ABCDEF на прямой AF взята точка X так, что  ∠XCD = 45°.  Hайдите угол FXE.

ВверхВниз   Решение


В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата.

ВверхВниз   Решение


Внутри окружности с центром O отмечены точки A и B так, что  OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Точки B1 и B2 лежат на луче AM, а точки C1 и C2 на луче AK. Окружность с центром O вписана в треугольники AB1C1 и AB2C2.
Докажите, что углы B1OB2 и C1OC2 равны.

ВверхВниз   Решение


Автор: Ботин Д.А.

Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?

ВверхВниз   Решение


Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству  (x + y)² + (x + z)² = (y + z)²?

Вверх   Решение

Задача 115453
Темы:    [ Четность и нечетность ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10
Из корзины
Прислать комментарий

Условие

Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству  (x + y)² + (x + z)² = (y + z)²?


Решение

После раскрытия скобок и сокращения подобных получим  x² + xy + xz = yz,  откуда  (x + y)(x + z) = 2yz.  Если х, у и z нечётны, то левая часть делится на 4, а правая – нет. Противоречие.


Ответ

Не существуют.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2009
Класс
Класс 10
задача
Номер 06.4.10.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .