Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Заданы N-вершинный ориентированный граф с двумя выделенными вершинами v1 и v2 и целое число C. Требуется:
1) определить, существует ли в заданном графе путь из вершины v1 в вершину v2, состоящий из C ребер (путь может иметь самопересечения как по вершинам, так и по ребрам);
2) найти минимум функции | X - C |, где X – количество ребер в некотором пути из v1 в v2 .

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в графе (1 ≤ N ≤ 10). В следующих N строках расположена матрица N × N из нулей и единиц, элемент (i, j) которой равен единице, если в графе есть ребро из вершины i в вершину j, и нулю, если такого ребра нет. (Граф может содержать петли, т.е. ребра, идущие из вершины в саму себя). Элементы матрицы во входном файле записаны без разделительных пробелов. 

Наконец, строка N+2 содержит номера вершин v1 и v2 , а строка N+3 – десятичную запись числа C (1 &le C < 1050).

Выходные данные

В первую строку выходного файла выведите ответ на первый пункт задачи: «Yes», если путь длины C существует, и «No», если нет. Во вторую строку запишите ответ на второй пункт задачи. Если ни одного пути из v1 в v2 не существует, ваша программа должна вывести -1.

Пример входного файла

3
010
001
100
1 1
555555555555555555555555555555555

Пример выходного файла

Yes
0

Вниз   Решение


Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.

ВверхВниз   Решение


Автор: Анджанс А.

Рассматривается конечное множество M единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества M) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества M.

ВверхВниз   Решение


На доске записано несколько последовательных натуральных чисел. Ровно 52% из них – чётные. Сколько чётных чисел записано на доске?

ВверхВниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.

Вверх   Решение

Задача 115779
Темы:    [ Системы точек и отрезков (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Центральная симметрия помогает решить задачу ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.


Решение 1

  Пусть C – вершина данного угла (см. рис.). Применив теорему Менелая (см. задачу 53857) к треугольнику ABC и прямой A2B2, получим
  Аналогично,  
  Применив теорему Менелая к треугольнику ABC и прямой A1B2, получим     откуда  
  Аналогично     Следовательно, PA = QB, что и требовалось.


Решение 2

  Сделаем центральную симметрию относительно точки M. Пусть точки A1 и B2 переходят в точки A3 и B3 соответственно. Надо доказать, что прямые AB, A2B1 и B3A3 пересекаются в одной точке. Далее можно рассуждать по-разному.

  Первый способ. Проведём через точку M прямую, параллельную BC. Из подобия треугольников следует, что

  где X – точка пересечения прямых AB и B1B3. Перемножив, получаем

  Из теоремы Чевы (см. задачу 53856), примененной к треугольнику MB1B2, следует, что прямые MX, B1A2 и B3A3 пересекаются в одной точке, что и требовалось.

  Второй способ. Прямые AA2 и BB1, пересекаются в точке C; прямые A2B3 и B1A3, совпадающие соответственно с A2B2 и B1A1, пересекаются в точке M. Прямые AB3 и BA, симметричные соответственно BB2 и AA1, пересекаются в точке C1, симметричной точке C. Точки C, M и C1 лежат на одной прямой, поэтому из теоремы, обратной к теореме Дезарга, применённой к треугольникам AA2B3 и BB1A3, следует, что прямые AB, A2B1 и B3A3 пересекаются в одной точке.


Решение 3

  Рассматривая центральные проекции прямой AB на прямую AC из точек B1, B2, получаем равенство двойных отношений (см. рис.)
(APMB) = (AA1A2C) = (CA2A1A) = (BQMA),  что равносильно утверждению задачи.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2007
тур
задача
Номер 16

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .