Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

Вниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

Вверх   Решение

Задача 115903
Темы:    [ Пересекающиеся окружности ]
[ Окружности (построения) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.


Решение

Пусть O, r – центр и радиус некоторой окружности, касающейся данных; r1, r2 – радиусы данных окружностей. Тогда либо  OO1 = r1r,  OO2 = r2 + r,  либо  OO1 = r1 + r,  OO2 = r2r,  и в обоих случаях  OO1 + OO2 = r1 + r2.  Следовательно, среди всех точек, удовлетворяющих этому условию, надо найти наиболее удалённую от прямой O1O2. Наибольшую высоту среди всех треугольников с данными одной стороной и суммой двух других имеет равнобедренный (см. решение задачи 55613). Отсюда получаем, что центр искомой окружности лежит на равных расстояниях  ½ (r1 + r2)  от точек O1 и O2, а её радиус равен  ½ |r1r2|.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2009
Класс
Класс 9
задача
Номер 9.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .