ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC (AB = BC). Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A. На большей стороне AC треугольника ABC взята точка N так, что серединные перпендикуляры к отрезкам AN и NC пересекают стороны AB и BC в точках K и M соответственно. Докажите, что центр O описанной окружности треугольника ABC лежит на описанной окружности треугольника KBM. В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе? Окружность, вписанная в четырёхугольник ABCD , касается его сторон DA , AB , BC и CD в точках K , L , M и N соответственно. Пусть S1 , S2 , S3 и S4 – окружности, вписанные в треугольники AKL , BLM , CMN и DNK соответственно. К окружностям S1 и S2 , S2 и S3 , S3 и S4 , S4 и S1 проведены общие касательные, отличные от сторон четырёхугольника ABCD . Докажите, что четырёхугольник, образованный этими четырьмя касательными, – ромб. Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если AB = DE, то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D. В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны. Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
На сторонах AB и BC треугольника ABC
отмечены точки D и F соответственно,
E — середина отрезка DF . Докажите,
что AD+FC На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что RX = RY. Точки K , L , M и N — середины сторон соответственно AB , BC , CD и AD параллелограмма ABCD площади s . Найдите площадь четырёхугольника, образованного пересечением прямых AL , AM , CK и CN . Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что L1P = L2Q. Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение? Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны. Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны. |
Задача 116075
УсловиеИз вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны. Решение Пусть высоты, проведенные из вершин M и N треугольника AMN пересекаются в
точке H и пересекают прямые AD и AB в точках K и L соответственно (см. рис.).
Тогда достаточно
доказать, что A, H и P лежат на одной прямой. Заметим, что данные высоты параллельны сторонам
параллелограмма. Для треугольника DMC и прямой BN запишем теорему Менелая:
Cлучай, когда угол A – острый, рассматривается аналогично. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке