Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

Вниз   Решение


В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

ВверхВниз   Решение


Решить уравнение 2-log sin x cos x=log cos x sin x.

ВверхВниз   Решение


Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a .

ВверхВниз   Решение


Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

ВверхВниз   Решение


Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o . Найдите периметр трапеции.

ВверхВниз   Решение


Дан треугольник ABC и точка P внутри него. A' , B' , C' – проекции P на прямые BC , CA , AB . Докажите, что центр окружности, описанной около треугольника A'B'C' , лежит внутри треугольника ABC .

ВверхВниз   Решение


Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

Вверх   Решение

Задача 116513
Темы:    [ Признаки перпендикулярности ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3-
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.


Решение

Пусть D – вершина данной треугольной пирамиды ABCD. Предположим, что у прямоугольных треугольников ADB, BDC и CDA прямые углы при вершинах A, B и C. Тогда AD < BD < CD < AD, что невозможно. Значит, прямые углы двух боковых граней прилежат к одной из вершин основания. Пусть это вершина A, т.е. ∠BAD = ∠CAD = 90°. Положим для определённости, что ∠BCD = 90°.

Ребро DA – перпендикуляр к плоскости ABC. По теореме о трёх перпендикулярах ∠ACD = 90°, значит, BD > AB > BC, BD > AB > AC, BD > AD, т.е. BD наибольшее ребро пирамиды, BD = a, а AC = b.

Пусть CK и CL – высоты прямоугольных треугольников ABC и BCD. Тогда CKAB и CKBD, поэтому CK – перпендикуляр к плоскости ABD, а KLBD по теореме о трёх перпендикулярах, значит, CLK – линейный угол двугранного ребра при ребре BD. По условию задачи ∠CLK = α.

Обозначим BC = x. Из прямоугольных треугольников ABC и BCD находим, что

а т.к. CK = CLsinα, то

откуда

Следовательно,


Ответ

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 7330

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .