Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| .

Вниз   Решение


Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

ВверхВниз   Решение


Дано 101-элементное подмножество A множества  S = {1, 2, ..., 1000000}.
Докажите, что для некоторых  t1, ..., t100  из S множества   Aj = {x + tj | xA;  j = 1, ..., 100}   попарно не пересекаются.

ВверхВниз   Решение


Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

ВверхВниз   Решение


Автор: Сонкин М.

Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что  KOAC.

ВверхВниз   Решение


В трапеции ABCD  AB – основание,  AC = BCH – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABMC , в котором AB=BC , BAM = 30o , ACM= 150o . Докажите, что AM – биссектриса угла BMC .

ВверхВниз   Решение


Автор: Иванова Е.

Дядя Фёдор, кот Матроскин, Шарик и почтальон Печкин сидят на скамейке. Если Шарик, сидящий справа от всех, сядет между дядей Фёдором и котом, то кот станет крайним слева. В каком порядке они сидят?

ВверхВниз   Решение


Если для вчера завтра был четверг, то какой день будет вчера для послезавтра?

ВверхВниз   Решение


Пусть P(x) – многочлен степени  n > 1  с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...))  (P применён k раз). Докажите, что существует не более n целых чисел t, при которых  Qk(t) = t.

ВверхВниз   Решение


Пусть p – простое число. Докажите, что при некотором простом q все числа вида  np – p  не делятся на q.

ВверхВниз   Решение


Найдите все такие пары  (x, y)  целых чисел, что  1 + 2x + 22x+1 = y².

ВверхВниз   Решение


Автор: Фольклор

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?

Вверх   Решение

Задача 116737
Тема:    [ Задачи на движение ]
Сложность: 2+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?


Решение

  Первый способ. Пусть до места встречи Петя проехал  10 + x  км, тогда до Николаево ему оставалось ехать 3x км. Коля проехал до места встречи
20 + y  км, и ему до Петрово оставалось ехать 2y км (см. рис.).

  Выражая двумя способами длины участков PV и NV, составляем систему:   .   Решив её, получим  x = y = 10.  Значит, расстояние между Петрово и Николаево составляет  10 + 4x = 50  (км).

  Второй способ. Пусть S км – искомое расстояние. Тогда до встречи Петя проехал  10 + ¼ (S – 10)  (км), а Коля –  20 + ⅓ (S – 20)  (км). Следовательно,  10 + ¼ (S – 10) +  20 + ⅓ (S – 20) = S.  Решив уравнение, получим  S = 50.

  Третий способ. Пусть, проехав 10 км, Петя оказался в точке A, а Коля, проехав 20 км, – в точке B. Тогда до встречи Петя от A проехал четверть отрезка AB и еще 5 км, а Коля от B – треть AB и еще 10/3 км. Значит,  5 + 10/3 = 25/3  км составляют  1 – ⅓ – ¼ = 5/12  отрезка AB.
  Таким образом,  AB = 12/5·25/3 = 20  км, а весь путь равен  20 + 30 = 50  км.


Ответ

50 км.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2011/12
класс
Класс 7
задача
Номер 7.3.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .