Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что  x² + y² + 1 ≥ xy + x + y  при любых x и y.

Вниз   Решение


Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

ВверхВниз   Решение


Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.

ВверхВниз   Решение


В прямоугольном треугольнике ABC катет AB равен 21, а катет BC равен 28. Окружность, центр O которой лежит на гипотенузе AC, касается обоих катетов.
Найдите радиус окружности.

ВверхВниз   Решение


Через вершину C квадрата ABCD проведена прямая, пересекающая диагональ BD в точке K, а серединный перпендикуляр к стороне AB – в точке M (M между C и K). Найдите ∠DCK, если  ∠AKB = ∠AMB.

ВверхВниз   Решение


За круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики.

ВверхВниз   Решение


Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.

ВверхВниз   Решение


4 монеты. Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

ВверхВниз   Решение


Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

ВверхВниз   Решение


Пусть O1, O2 и O3 — центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Докажите, что точки A, B и C — основания высот треугольника O1O2O3.

ВверхВниз   Решение


В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A.
Докажите, что треугольники HB1C1 и ABC подобны.

ВверхВниз   Решение


Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?

ВверхВниз   Решение


Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

ВверхВниз   Решение


Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Вверх   Решение

Задача 30292
Темы:    [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 6,7
Из корзины
Прислать комментарий

Условие

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?


Решение

Предположим, что нам это удалось. Теперь пятерка встречается 7 раз. Внутри цепочки она встречается чётное число раз. Значит, на одном из концов – пятерка. Аналогично можно доказать, что на концах находятся и все остальные "знаки" домино. Но знаков шесть, а концов всего два. Противоречие.

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 1
Название Четность
Тема Четность и нечетность
задача
Номер 11
книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 2
Название Четность
Тема Четность и нечетность
задача
Номер 011
олимпиада
Название Московская математическая олимпиада
год
Номер 29
Год 1966
вариант
1
Класс 8
Тур 1
задача
Номер 5
Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Название Странные игры
Тема Теория игр
Номер 19
задача
Номер 3
Кружок
Название Кировская ЛМШ
класс
Класс 6
год
Год 2000 год
Место проведения Вишкиль
занятие
Номер Чётность-1
Название Чётность-1
Тема Четность и нечетность
задача
Номер 11

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .