Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?

Вниз   Решение


Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

ВверхВниз   Решение


Автор: Орлов О.

На плоскости проведено несколько прямых, никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что в областях, на которые прямые поделили плоскость, можно расставить положительные числа так, чтобы суммы чисел по обе стороны каждой из проведённых прямых были равны.

ВверхВниз   Решение


Рассмотрим все натуральные числа, в десятичной записи которых участвуют лишь цифры 1 и 0. Разбейте эти числа на два непересекающихся подмножества так, чтобы сумма любых двух различных чисел из одного и того же подмножества содержала в своей десятичной записи не менее двух единиц.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

ВверхВниз   Решение


По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
Могут ли через некоторое время все числа стать одинаковыми?

Вверх   Решение

Задача 30308
Темы:    [ Четность и нечетность ]
[ Процессы и операции ]
[ Обратный ход ]
Сложность: 3+
Классы: 6,7
Из корзины
Прислать комментарий

Условие

По кругу расставлено девять чисел – четыре единицы и пять нулей. Каждую секунду над числами проделывают следующую операцию: между соседними числами ставят ноль, если они различны, и единицу, если они равны; после этого старые числа стирают.
Могут ли через некоторое время все числа стать одинаковыми?


Подсказка

Проведите анализ с конца: что было перед тем, как возникла комбинация из равных цифр?


Решение

Первая комбинация из девяти единиц может получиться только из комбинации девяти нулей. Если же получилось девять нулей, то на предыдущем ходу нули и единицы чередовались, что невозможно, так как их нечётное количество.


Ответ

Не могут.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 2
Название Четность
Тема Четность и нечетность
задача
Номер 027
книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 1
Название Четность
Тема Четность и нечетность
задача
Номер 25
журнал
Название "Квант"
год
Год 1970
выпуск
Номер 12
Задача
Номер М56

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .