Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?

Вниз   Решение


Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)

ВверхВниз   Решение


Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.

ВверхВниз   Решение


Про грибы.В корзине лежат 30 грибов. Среди любых 12 из них имеется хотя бы один рыжик, а среди любых 20 грибов — хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?

ВверхВниз   Решение


Автор: Фольклор

У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?

ВверхВниз   Решение


На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.

ВверхВниз   Решение


Фокусник выкладывает в ряд колоду из 52 карт и объявляет, что 51 из них будут выкинуты со стола, а останется тройка треф. Зритель на каждом шаге говорит, какую по счёту с края карту надо выкинуть, а фокусник выбирает, с левого или с правого края считать, и выкидывает соответствующую карту. При каких начальных положениях тройки треф можно гарантировать успех фокуса?

ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AB = BC)  биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC.

ВверхВниз   Решение


Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

ВверхВниз   Решение


Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.

ВверхВниз   Решение


На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?

ВверхВниз   Решение


Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

ВверхВниз   Решение


Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.

Вверх   Решение

Задача 30371
Тема:    [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.


Решение 1

Из определения НОД следует, что  a = a' НОД(a, b),  b = b' НОД(a, b),  где  НОД(a', b') = 1.  Из определения НОК следует, что  НОК(a, b) = a'b' НОД(a, b).  Поэтому  НОД(a, b)НОК(a, b) = a'b' НОД(a, b)НОД(a, b) = ab.


Решение 2

См. задачу 60532 в).

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .