ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны На одной прямой взяты точки A1, B1 и C1, а на
другой — точки A2, B2 и C2. Прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A
и B соответственно. Докажите, что точки A, B и C лежат на одной
прямой (Папп).
На сторонах AB, BC и CD четырехугольника ABCD
(или на их продолжениях) взяты точки K, L и M. Прямые KL
и AC пересекаются в точке P, LM и BD — в точке Q.
Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.
Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки. Докажите, что среди любых 10 целых чисел найдётся несколько, сумма которых делится на 10. Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O. а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10. Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке P, а продолжения сторон BC и AD — в
точке Q. Через точку P проведена прямая, пересекающая стороны BC
и AD в точках E и F. Докажите, что точки пересечения диагоналей
четырехугольников
ABCD, ABEF и CDFE лежат на прямой, проходящей
через точку Q.
Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого? |
Задача 30634
УсловиеМожно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого? ПодсказкаПроследите за последней цифрой. РешениеСумма этих чисел должна делиться на 20, значит, сумма их последних цифр равна 10. Но никакие две их данных цифр в сумме не дают 10. ОтветНельзя. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке