Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.

Вниз   Решение


В треугольнике ABC медианы AA0, BB0, CC0 пересекаются в точке M.
Докажите, что центры описанных окружностей треугольников MA0B0, MCB0, MA0C0, MBC0 и точка M лежат на одной окружности.

ВверхВниз   Решение


Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

ВверхВниз   Решение


Автор: Анджанс А.

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

ВверхВниз   Решение


Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.

ВверхВниз   Решение


Автор: Bong-Gyun Koh

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны
  а) числа 1, 2, 4;
  б) любые 100 различных действительных чисел?

ВверхВниз   Решение


Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?

ВверхВниз   Решение


Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

ВверхВниз   Решение


Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной?

ВверхВниз   Решение


Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Вверх   Решение

Задача 32839
Тема:    [ Задачи на движение ]
Сложность: 4-
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?


Решение

  Посмотрим, куда путник сможет дойти за час, выйдя из точки M (Морозки). Если он пойдёт по полю, то через час окажется в пределах круга радиуса 3 (км) с центром M. Если он пойдёт по дороге, то окажется в какой-то точке отрезка KL длины 8 с серединой в M (мы считаем, что дорога горизонтальна). Докажем, что за час он не сможет выйти за пределы фигуры F, ограниченной указанной окружностью и касательными, проведёнными к ней из точек K и L (рис. слева). Действительно, если он дойдёт по дороге до точки P, затратив время  1 – t,  а потом свернёт в поле, то через час окажется в пределах круга радиуса 3t с центром в точке P. Так как  PK = 4t,  то в силу подобия этот круг касается границы фигуры F. Это значит, что он будет находиться внутри (или на границе) F. С другой стороны, ясно, что за час можно попасть в любую точку границы F, подобрав подходящую точку поворота P.
  Если путник будет идти не час, а другое время T, то он может оказаться на границе фигуры, гомотетичной F с центром M и коэффициентом T. Таким образом, следует найти минимальную такую фигуру, на границе которой находится точка B (водокачка).

  Это делается следующим образом. Будем считать, что B находится правее и выше точки M. Построим прямоугольный треугольник ABC с прямым углом B, вершинами A и C на дороге и отношением  AB : AC = 3 : 4  (A левее C). Если M находится левее A, то путнику надо идти по дороге до точки A, а потом по отрезку AB. Если же M находится на отрезке AC, то надо сразу идти по отрезку MB.

Источники и прецеденты использования

Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Год 2001/02
Место проведения 57 школа
занятие
Номер 11
Название Путешествия
Тема Неопределено
задача
Номер 04
Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Место проведения 57 школа
Год 2005/06
занятие
Название Путешествия
Номер 14
Тема Задачи на движение
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .