Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

Вниз   Решение


Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.

ВверхВниз   Решение


Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

ВверхВниз   Решение


Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера:  V – E + F = 2.

ВверхВниз   Решение


C — точка на продолжении диаметра AB, CD — касательная, угол ADC равен 110o. Найдите угловую величину дуги BD.

ВверхВниз   Решение


Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

ВверхВниз   Решение


Чему равна площадь треугольника со сторонами 18, 17, 35?

ВверхВниз   Решение


Существует ли целое число, произведение цифр которого равно  а) 1980?  б) 1990?  в) 2000?

ВверхВниз   Решение


Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.

ВверхВниз   Решение


Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырехугольника равна $\frac12 d_1 d_2\sin\varphi$, где $d_1$ и $d_2$ — длины диагоналей, а $\varphi$ — угол между ними.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что  AC1 = BA1 = CB1.  Докажите, что треугольник ABC правильный.

ВверхВниз   Решение


а) Используя геометрические соображения, докажите, что основание и боковая сторона равнобедренного треугольника с углом 36o при вершине несоизмеримы.
б) Придумайте геометрическое доказательство иррациональности $ \sqrt{2}$.

ВверхВниз   Решение


Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.

Вверх   Решение

Задача 52581
Темы:    [ Угол между касательной и хордой ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 2+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Через конец хорды, делящей окружность в отношении 3:5, проведена касательная. Найдите острый угол между хордой и касательной.


Подсказка

Угол между касательной и хордой, равен половине угловой величины дуги, заключённой между ними.


Решение

Угловая величина дуги, заключённой между касательной и хордой, равна $ {\frac{3}{8}}$ . 360o = 135o. Следовательно, искомый угол равен $ {\frac{135^{\circ}}{2}}$ = 67o30'.


Ответ

67o30'.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 246

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .