Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен $ {\frac{1}{3}}$ одной из высот.

Вниз   Решение


В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

ВверхВниз   Решение


В треугольнике $ABC$ точки $P$ и $Q$ изогонально сопряжены. Прямая $PQ$ пересекает окружность $ABC$ в точке $X$. Прямая, симметричная $BC$ относительно $PQ$, пересекает прямую $AX$ в точке $E$. Докажите, что точки $A$, $P$, $Q$, $E$ лежат на одной окружности.

ВверхВниз   Решение


В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.

ВверхВниз   Решение


На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.

ВверхВниз   Решение


Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

Вверх   Решение

Задача 52671
Темы:    [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Формулы для площади треугольника ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.


Решение

EK || AB  в силу симметрии трапеции относительно прямой, соединяющей середины оснований. Пусть O – центр данной окружности, M – середина AB. Из прямоугольного треугольника AEO видно, что    Площадь равностороннего треугольника AEM равна    а трапеция ABKE разбивается на три равных треугольника AEM, BKM и EMK.


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 336

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .