Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте треугольник по стороне и медианам, проведённым к двум другим сторонам.

Вниз   Решение


В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что  2A1K = |b – c|.

ВверхВниз   Решение


Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

ВверхВниз   Решение


К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .

ВверхВниз   Решение


Докажите, что биссектрисы треугольника пересекаются в одной точке.

Вверх   Решение

Задача 53412
Темы:    [ Свойства биссектрис, конкуррентность ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что биссектрисы треугольника пересекаются в одной точке.


Подсказка

Точка пересечения двух биссектрис треугольника равноудалена от всех сторон треугольника.


Решение

Пусть O – точка пересечения биссектрис треугольника ABC, проведённых из вершин B и C. Поскольку точка O лежит на биссектрисе угла B, то она равноудалена от прямых AB и BC. В то же время точка O лежит на биссектрисе угла C, поэтому она равноудалена от прямых AC и BC. Значит, точка O равноудалена от прямых AB и AC. Так как она находится внутри треугольника ABC, то лежит и на биссектрисе угла A.

Замечания

Поскольку точка пересечения биссектрис треугольника равноудалена от всех его сторон, она является центром вписанной в треугольник окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 0
Название Вводные задачи
задача
Номер 05.000.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .