ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске была начерчена трапеция ABCD (AD| BC)
и проведены перпендикуляр OK из точки O пересечения диагоналей на
основание AD и средняя линия EF. Затем трапецию стерли. Как
восстановить чертеж по сохранившимся отрезкам OK и EF?
В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра. Даны окружность S, точки A и B на ней и точка C
хорды AB. Для каждой окружности S', касающейся хорды AB
в точке C и пересекающей окружность S в точках P
и Q, рассмотрим точку M пересечения прямых AB и PQ.
Докажите, что положение точки M не зависит от выбора
окружности S'.
Докажите, что три прямые, симметричные произвольной прямой, проходящей
через точку пересечения высот треугольника, относительно сторон
треугольника, пересекаются в одной точке.
У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными. На плоскости даны n (n > 2) точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались? Даны прямая и окружность.
Постройте окружность данного радиуса r, касающуюся их.
На окружности с диаметром AB взяты точки C и D.
Прямая CD и касательная к окружности в точке B пересекаются в
точке X. Выразите BX через радиус окружности R и
углы
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника. |
Задача 54972
УсловиеЧерез некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника. ПодсказкаКаждый из получившихся трёх треугольников подобен данному. Решение Каждый из получившихся треугольников подобен данному. Отношение сторон подобных треугольников равно квадратному корню из отношения их площадей.
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке