ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что x² + y² + 1 ≥ xy + x + y при любых x и y. Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.
В прямоугольном треугольнике ABC катет AB равен 21, а катет BC равен 28. Окружность, центр O которой лежит на гипотенузе AC, касается обоих катетов. Через вершину C квадрата ABCD проведена прямая, пересекающая диагональ BD в точке K, а серединный перпендикуляр к стороне AB – в точке M (M между C и K). Найдите ∠DCK, если ∠AKB = ∠AMB. За круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики. Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.
4 монеты. Из четырех монет одна
фальшивая (она отличается по весу от настоящей, но не известно, в
какую сторону). Требуется за два взвешивания на двухчашечных
весах без гирь найти фальшивую монету.
Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?
Пусть O1, O2 и O3 — центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Докажите, что точки A, B и C — основания высот треугольника O1O2O3.
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. |
Задача 55396
УсловиеВ треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. ПодсказкаТочки A, B1, B, H лежат на одной окружности. Решение Пусть треугольник ABC остроугольный. Поскольку точки B1 и B лежат на окружности с диаметром AH, то
∠C1B1H = ∠AB1H = ∠ABH = ∠B. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке