ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны угол XAY и окружность внутри его. Постройте точку окружности,
сумма расстояний от которой до прямых AX и AY минимальна.
Окружности O1 и O2 лежат внутри треугольника и касаются друг друга извне, причём окружность O1 касается двух сторон треугольника, а окружность O2 -- тоже касается двух сторон треугольника, но не тех же, что O1. Доказать, что сумма радиусов этих окружностей больше радиуса окружности, вписанной в треугольник. Все грани шестигранника – четырёхугольники, а в каждой его вершине сходятся по три ребра. Верно ли, что если для него существуют вписанная и описанная сферы, центры которых совпадают, то этот шестигранник – куб?
Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение. Даны отрезки a и b. Постройте отрезки
(Сообщил А. Л.Брудно) Прямоугольное поле m×n разбито на mn квадратных клеток. Некоторые клетки покрашены в чёрный цвет. Известно, что все чёрные клетки могут быть разбиты на несколько непересекающихся и не имеющих общих вершин чёрных прямоугольников. Считая, что цвета клеток даны в виде массива типа
array[1..m] of array [ 1..n] of boolean;
подсчитать число чёрных прямоугольников, о которых шла
речь. Число действий должно быть порядка
mn.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что ломаная AOC делит ABCD на две
фигуры равной площади.
а)
sin |
Задача 57451
Условиеа)
sin Решениеа) Так как
sin x = 2 sin(x/2)cos(x/2), то, используя
результаты задач 12.36, а) и 12.36, в), получаем
sin Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке