Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn.
  а) При  n = 9  найти нумерацию, при которой сумма номеров сторон для всех треугольников A1OA2, ..., AnOA1 одинакова.
  б) Доказать, что при  n = 10  такой нумерации осуществить нельзя.

Вниз   Решение


Докажите, что в любой компании найдутся два человека, имеющие одинаковое число друзей (из этой компании).

ВверхВниз   Решение


Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.

ВверхВниз   Решение


Точки A и B движутся по двум фиксированным лучам с общим началом O так, что величина $ {\frac{p}{OA}}$ + $ {\frac{q}{OB}}$ остается постоянной. Докажите, что прямая AB при этом проходит через фиксированную точку.

ВверхВниз   Решение


На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.

 

ВверхВниз   Решение


Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.

ВверхВниз   Решение


Многоугольник M' гомотетичен многоугольнику M с коэффициентом гомотетии -1/2. Докажите, что существует параллельный перенос, переводящий многоугольник M' внутрь многоугольника M.

ВверхВниз   Решение


Пусть характеристическое уравнение (11.3) последовательности {an} имеет корень x0 кратности 2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = (c1 + c2n)x0n        (n = 0, 1, 2,...).


ВверхВниз   Решение


На сторонах треугольника ABC как на основаниях построены подобные равнобедренные треугольники AB1С и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

ВверхВниз   Решение


Докажите, что точка X лежит на прямой AB тогда и только тогда, когда $ \overrightarrow{OX}$ = t$ \overrightarrow{OA}$ + (1 - t)$ \overrightarrow{OB}$ для некоторого t и любой точки O.

Вверх   Решение

Задача 57709
Тема:    [ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 2
Классы: 9
Из корзины
Прислать комментарий

Условие

Докажите, что точка X лежит на прямой AB тогда и только тогда, когда $ \overrightarrow{OX}$ = t$ \overrightarrow{OA}$ + (1 - t)$ \overrightarrow{OB}$ для некоторого t и любой точки O.

Решение

Точка X лежит на прямой AB тогда и только тогда, когда $ \overrightarrow{AX}$ = $ \lambda$$ \overrightarrow{AB}$, т. е. $ \overrightarrow{OX}$ = $ \overrightarrow{OA}$ + $ \overrightarrow{AX}$ = (1 - $ \lambda$)$ \overrightarrow{OA}$ + $ \lambda$$ \overrightarrow{OB}$.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 13
Название Векторы
Тема Векторы
параграф
Номер 4
Название Суммы векторов
Тема Свойства суммы, разности векторов и произведения вектора на число
задача
Номер 13.027

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .