ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что: а)
la2 + lb2 + lc2 Докажите, что инверсия с центром в вершине A
равнобедренного треугольника ABC (AB = AC) и степенью AB2
переводит основание BC треугольника в дугу BC
описанной окружности.
Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что ∠AXM = 2∠BXN. Прямые
AA1, BB1, CC1 пересекаются в одной точке O.
Докажите, что точки пересечения прямых AB и A1B1, BC
и B1C1, AC и A1C1 лежат на одной прямой (Дезарг).
В прямоугольник ABCD вписаны два различных
прямоугольника, имеющих общую вершину K на стороне AB. Докажите,
что сумма их площадей равна площади прямоугольника ABCD.
По арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь
по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов
его поворотов не меньше 2998 радиан.
а) Пусть AA' и BB' —
сопряженные диаметры эллипса с центром O. Проведем через точку
B перпендикуляр к прямой OA и отложим на нем отрезки BP и
BQ, равные OA. Докажите, что главные оси эллипса являются
биссектрисами углов между прямыми OP и OQ.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
Даны четырехугольник ABCD и прямая l. Обозначим через P,
Q, R точки пересечения прямых AB и CD, AC
и BD, BC и AD, а через P1, Q1, R1 — середины
отрезков, которые эти пары прямых высекают на прямой l. Докажите,
что прямые PP1, QQ1 и RR1 пересекаются в одной точке.
Докажите, что
ha Впишите в данную окружность n-угольник, одна
из сторон которого проходит через данную точку, а остальные
стороны параллельны данным прямым.
|
Задача 57896
УсловиеВпишите в данную окружность n-угольник, одна
из сторон которого проходит через данную точку, а остальные
стороны параллельны данным прямым.
РешениеПри последовательных симметриях относительно прямых
l1,..., ln - 1, перпендикулярных данным прямым и проходящих
через центр окружности, вершина A1 искомого многоугольника переходит
в вершину An. Если n нечетно, то композиция этих симметрий —
поворот на известный угол, поэтому через точку M нужно провести
хорду A1An известной длины. Если n четно, то рассматриваемая
композиция является симметрией относительно некоторой прямой,
поэтому из точки M нужно опустить перпендикуляр на эту прямую.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке