Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

Вниз   Решение


Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

ВверхВниз   Решение


На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3. Докажите, что если описанные окружности треугольников A1A2B3, A1B2A3 и B1A2A3 проходят через одну точку, то и описанные окружности треугольников B1B2A3, B1A2B3 и A1B2B3 пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что если  ctg($ \alpha$/2) = (b + c)/a, то треугольник прямоугольный.

ВверхВниз   Решение


Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Вверх   Решение

Задача 58349
Тема:    [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 4
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).



Решение

После инверсии с центром в точке пересечения S1 и S2 получим прямые l1, l2 и l, пересекающиеся в одной точке. Прямая l1 пересекает окружность S4* в точках A и B, прямая l2 пересекает S3* в точках C и D, а прямая l проходит через точки пересечения этих окружностей. Поэтому точки A, B, C, D лежат на одной окружности (задача 3.9).


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 28
Название Инверсия
Тема Инверсия
параграф
Номер 5
Название Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
Тема Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
задача
Номер 28.030

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .