ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой. Постройте четырехугольник ABCD по четырем
углам и длинам сторон AB = a и CD = b.
Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой. Диагонали четырехугольника ABCD пересекаются
в точке P. Расстояния от точек A, B и P до прямой CD
равны a, b и p. Докажите, что площадь четырехугольника ABCD
равна
ab . CD/2p.
Можно ли поместить правильный треугольник внутрь правильного шестиугольника так, чтобы из любой вершины шестиугольника были видны все три вершины треугольника? (Точка $A$ видна из точки $B$, если отрезок $AB$ не содержит внутренних точек треугольника.) Докажите, что прямые, соединяющие вершины треугольника с точками
касания противоположных сторон с вписанной окружностью,
пересекаются в одной точке.
|
Задача 58445
УсловиеДокажите, что прямые, соединяющие вершины треугольника с точками
касания противоположных сторон с вписанной окружностью,
пересекаются в одной точке.
РешениеСделаем проективное преобразование, которое вписанную
окружность переводит в окружность, а точку пересечения двух из
трех рассматриваемых прямых — в ее центр (см. задачу 30.16, а)).
Тогда образы этих двух прямых являются одновременно биссектрисами и высотами образа данного треугольника, следовательно, он является
правильным. Для правильного треугольника утверждение задачи очевидно.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке