Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что  AQ = AC,  BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.

Вниз   Решение


Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна.

ВверхВниз   Решение


В описанном четырёхугольнике ABCD  AB = CD ≠ BC.  Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый.

ВверхВниз   Решение


Постройте правильный десятиугольник.

ВверхВниз   Решение


Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что  1/AE2 + 1/AF2 = 1/AB2.

ВверхВниз   Решение


Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

ВверхВниз   Решение


а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.

ВверхВниз   Решение


11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

Вверх   Решение

Задача 60307
Темы:    [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Докажите неравенство для натуральных n:  


Решение

Замечания

Ср. с задачей 73558.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 1
Название Метод математической индукции
Тема Индукция
параграф
Номер 2
Название Тождества, неравенства и делимость
Тема Индукция (прочее)
задача
Номер 01.034

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .