Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

Вниз   Решение


Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

ВверхВниз   Решение


С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.

ВверхВниз   Решение


На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?

ВверхВниз   Решение


На стороне треугольника взяты четыре точки K, P, H и M, являющиеся соответственно серединой этой стороны, основанием биссектрисы противоположного угла треугольника, точкой касания с этой стороной вписанной в треугольник окружности и основанием соответствующей высоты. Найдите KH, если KP = a, KM = b.

ВверхВниз   Решение


В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?

ВверхВниз   Решение


Докажите, что  a2 + b2 + c2 - (a - b)2 - (b - c)2 - (c - a)2 $ \geq$ 4$ \sqrt{3}$S.

ВверхВниз   Решение


Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей.

ВверхВниз   Решение


Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков.
Докажите, что найдутся такие команды А, В и С, что А выиграла у В, В выиграла у С, а С выиграла у А.

ВверхВниз   Решение


Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.

ВверхВниз   Решение


Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.

Вверх   Решение

Задача 60667
Темы:    [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.


Подсказка

bca = 10abc – 999a.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 2
Название Делимость
Тема Теория чисел. Делимость (прочее)
задача
Номер 04.041

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .