ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из 100 членов Совета Двух Племён часть — эльфы, остальные — гномы. Каждый написал два числа: количество эльфов в Совете и количество гномов в Совете. При этом своих соплеменников каждый посчитал верно, а при подсчёте иноплеменников ошибся ровно на 2. В написанных числах одна цифра встретилась не менее 222 раз. Сколько эльфов и сколько гномов могло быть в Совете? Если вариантов несколько — укажите один из них. В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$. Пусть точка $M$ – середина катета $AB$ прямоугольного треугольника $ABC$ с прямым углом $A$. На медиане $AN$ треугольника $AMC$ отмечена точка $D$, так что углы $ACD$ и $BCM$ равны. Докажите, что угол $DBC$ также равен этим углам.
Пусть p и q — отличные от нуля
действительные числа и p2 - 4q > 0. Докажите, что следующие
последовательности сходятся:
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
С какой гарантированной точностью вычисляется
12 монет. Из двенадцати монет
одиннадцать настоящих, а одна фальшивая (она отличается по весу
от настоящей, но не известно, в какую сторону). Требуется за три
взвешивания на двухчашечных весах без гирь найти фальшивую монету
и выяснить, легче она или тяжелее настоящей.
Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.
13 монет. Предположим теперь, что
имеется 13 монет, из которых одна — фальшивая. Как за три
взвешивания на двухчашечных весах без гирь найти фальшивую
монету, если не требуется выяснять, легче она или тяжелее
настоящей?
Как и раньше загадывается число от 1 до
200, а загадавший отвечает на вопросы ``да'' или ``
нет''. При этом ровно один раз (за все ответы) он имеет право
соврать. Сколько теперь понадобится вопросов, чтобы отгадать
задуманное число?
Имеется несколько кучек камней.
Двое по очереди берут из них камни. За один ход разрешается взять
из одной кучки от 1 до 5 камней. Определите выигрышную
стратегию в этой игре, если тот, кто взял последний камень а)
выигрывает; б) проыигрывает.
|
Задача 60919
Условие
Имеется несколько кучек камней.
Двое по очереди берут из них камни. За один ход разрешается взять
из одной кучки от 1 до 5 камней. Определите выигрышную
стратегию в этой игре, если тот, кто взял последний камень а)
выигрывает; б) проыигрывает.
Решениеб) Пусть в кучках m1, m2, ..., ml камней, и r1, r2, ..., rl — остатки от деления чисел m1, m2, ..., ml на 6. Положим
n = r1 ним-сумма по модулю 6. Если в
начальной позиции n = 0, то выигрывает второй игрок; во всех
остальных случаях — первый. Исключение составляет случай
(Рассмотрите этот случай отдельно.) Стратегия выигрыша первого игрока: если перед ходом первого игрока набор камней удовлетворяет равенствам 13.6 , причем l нечетно, то ход надо делать так, чтобы новая ним-сумма n' равнялась 1; если l четно и rl = 1, то забирается любой из камней, лежащих отдельно. Во всех остальных случаях ход надо делать так, чтобы n' = 0. Если это невозможно, то первый игрок проигрывает. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке