Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В неравнобедренном треугольнике ABC проведены медианы AK и BL . Углы BAK и CBL равны 30o . Найдите углы треугольника ABC .

Вниз   Решение


Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что  AM = AN = AB  (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.

ВверхВниз   Решение


Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

ВверхВниз   Решение


Пусть  P(x) = anxn + ... + a1x + a0  – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел  |3n+1P(n + 1)|,  ...,  |31P(1)|,  |1 – P(0)|  не меньше 1.

Вверх   Решение

Задача 64413
Темы:    [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Пусть  P(x) = anxn + ... + a1x + a0  – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел  |3n+1P(n + 1)|,  ...,  |31P(1)|,  |1 – P(0)|  не меньше 1.


Решение

Пусть все эти числа меньше 1, то есть равны нулю. Тогда  P(k) = 3k  при  k = 0, ..., n + 1.  Значит,  ΔP(k) = 3k+1 – 3k = 2·3k = 2P(k)  при
k = 0, ..., n.  Следовательно,  Δ²P(k) = 2ΔP(k) = 2²P(k)  при  k = 0, ..., n  – 1,  Δ³P(k) = 2³P(k)  при  k = 0, ..., n – 2,  ...,
Δn+1P(0) = 2n+1P(0) = 2n+1.  Однако  Δn+1P ≡ 0  (см. задачу 61437). Противоречие.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 6
Название Интерполяционный многочлен Лагранжа
Тема Многочлены (прочее)
задача
Номер 06.139

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .