Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Решите в натуральных числах уравнение  (1 + nk)l = 1 + nm,  где  l > 1.

Вниз   Решение


На экране компьютера напечатано некоторое натуральное число, кратное 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.

ВверхВниз   Решение


Касательная в точке B к описанной окружности S треугольника ABC пересекает прямую AC в точке K. Из точки K проведена вторая касательная KD к окружности S. Докажите, что BD — симедиана треугольника ABC.

ВверхВниз   Решение


Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

ВверхВниз   Решение


Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Дана клетчатая полоса  1×N.  Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?

Вверх   Решение

Задача 64583
Темы:    [ Теория игр (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Дана клетчатая полоса  1×N.  Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?

Решение

Пусть  N > 1.  Приведём выигрышную стратегию второго игрока. Первый ход он делает в крайнюю клетку, а дальше ходит как угодно. После k-го хода первого игрока крестики делят полоску не менее чем на k частей, состоящих из пустых клеток и ноликов. Но к этому моменту выставлен лишь  k – 1  нолик, значит, в одной из частей нолика нет, и туда второй игрок может сделать ход. Так как игра когда-нибудь кончится, проиграет первый.


Ответ

При  N = 1  выигрывает первый игрок, при  N > 1  – второй.

Замечания

1. 7 баллов.

2. Задача также предлагалась в Задачнике "Кванта" ("Квант", 2008, №2, зад. М2083).

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .